|
|
@ -36,6 +36,7 @@ |
|
|
|
</section> |
|
|
|
|
|
|
|
<section> |
|
|
|
<h2>The Lorenz Equations</h2> |
|
|
|
\[\begin{aligned} |
|
|
|
\dot{x} & = \sigma(y-x) \\ |
|
|
|
\dot{y} & = \rho x - y - xz \\ |
|
|
@ -43,6 +44,30 @@ |
|
|
|
\end{aligned} \] |
|
|
|
</section> |
|
|
|
|
|
|
|
<section> |
|
|
|
<h2>The Cauchy-Schwarz Inequality</h2> |
|
|
|
|
|
|
|
\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \] |
|
|
|
</section> |
|
|
|
|
|
|
|
<section> |
|
|
|
<h2>A Cross Product Formula</h2> |
|
|
|
|
|
|
|
\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} |
|
|
|
\mathbf{i} & \mathbf{j} & \mathbf{k} \\ |
|
|
|
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ |
|
|
|
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 |
|
|
|
\end{vmatrix} \] |
|
|
|
</section> |
|
|
|
|
|
|
|
<section> |
|
|
|
<h2>An Identity of Ramanujan</h2> |
|
|
|
|
|
|
|
\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = |
|
|
|
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} |
|
|
|
{1+\frac{e^{-8\pi}} {1+\ldots} } } } \] |
|
|
|
</section> |
|
|
|
|
|
|
|
</div> |
|
|
|
|
|
|
|
</div> |
|
|
|